System Composer™
Getting Started Guide

<

MATLAB&SIMULINK

R2023a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Composer™ Getting Started Guide
© COPYRIGHT 2019-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2019 Online only New for Version 1.0 (Release 2019a)

September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 1.3 (Release 2020b)
March 2021 Online only Revised for Version 2.0 (Release 2021a)
September 2021 Online only Revised for Version 2.1 (Release 2021b)
March 2022 Online only Revised for Version 2.2 (Release 2022a)
September 2022 Online only Revised for Version 2.3 (Release 2022b)

March 2023 Online only Revised for Version 2.4 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Product Overview

1]

System Composer Product Description 1-2

Compose an Architecture Model

2|

Compose and Analyze Systems Using Architecture Models 2-2
Create Architecture Model with Interfaces and Requirement Links 2-5
Visually Represent System 2-5
Edit Data Interfaces 2-13
Decompose Componentsco ittt 2-15
Robot Arm Architecture Model, 2-16
Manage Requirement Links i 2-17
Extend Architectural Design Using Stereotypes 2-19
Mobile Robot Architecture Model 2-19
Load Architecture Model Profile 2-20
Apply Stereotypes to Model Elements 2-22
Set Properties e 2-23
Analyze Architecture Model with Analysis Function 2-25
Mobile Robot Architecture Model with Properties 2-25
Perform Analysist e 2-26
Inspect Components in Custom Architecture Views 2-30
Mobile Robot Architecture Model with Properties 2-30
Create Spotlight Views from Components 2-31
Create Filtered Architecture View 2-32
Implement Behaviors for Architecture Model Simulation 2-37
Robot Arm Architecture Model 2-37
Reference Simulink Behavior Model in Component 2-38
Add Stateflow Chart Behavior to Component 2-41
Design Software Architecture in Component 2-42

Represent System Interaction Using Sequence Diagrams 2-44

iii

System Composer Terminology

3|

System Composer Concepts 0., 3-2
Author Architecture Models 3-2
Manage Variants i 3-4
Manage Interfaces i 3-4
Author Physical Models i 3-7
Extend Architectural Elements 3-9
Manage and Verify Requirements 3-11
Allocate Architecture Models 3-14
Create Custom Views ittt e 3-15
Analyze Architecture Models 3-17
Author Sequence Diagramsc.iiiii ... 3-18
Author Model Behavior 3-20
Design Software Architectures 3-22

iv Contents

Product Overview

1 Product Overview

System Composer Product Description

1-2

Design and analyze system and software architectures

System Composer enables the specification and analysis of architectures for model-based systems
engineering and software architecture modeling. With System Composer, you allocate requirements
while refining an architecture model that can then be designed and simulated in Simulink®.

Architecture models consisting of components and interfaces can be authored directly, imported from
other tools, or populated from the architectural elements of Simulink designs. You can describe your
system using multiple architecture models and establish direct relationships between them via model-
to-model allocations. Behaviors can be captured and simulated in sequence diagrams, state charts, or
Simulink models. You can define and simulate the execution order of component functions and
generate code from your software and AUTOSAR architecture models (with Simulink and Embedded
Coder®, including AUTOSAR Blockset for AUTOSAR workflows).

To investigate specific design or analysis concerns, you can create custom live views of the model.
Architecture models can be used to analyze requirements, capture properties via stereotyping,
perform trade studies, and produce specifications and interface control documents (ICDs).

Compose an Architecture Model

* “Compose and Analyze Systems Using Architecture Models” on page 2-2

* “Create Architecture Model with Interfaces and Requirement Links” on page 2-5
* “Extend Architectural Design Using Stereotypes” on page 2-19

* “Analyze Architecture Model with Analysis Function” on page 2-25

» “Inspect Components in Custom Architecture Views” on page 2-30

* “Implement Behaviors for Architecture Model Simulation” on page 2-37

2 Compose an Architecture Model

Compose and Analyze Systems Using Architecture Models

2-2

A system refers to a composition of elements that interact to achieve a goal no single element could
accomplish on its own. The constituent elements of a system can include mechanical parts, electrical
circuits, computer hardware, and software. A system specification describes the system elements,
their characteristics and properties, their interactions with each other, and the desired interaction (or
interface) of the overall system with its environment.

System Composer allows you to describe systems in terms of architecture models as a combination of
structural elements with underlying behavioral descriptions. These descriptive models can sometimes
be presented as distinct diagrams that are consistent with each other.

To perform a basic systems engineering workflow to design a mobile robotic arm using System
Composer, follow these steps.

* “Create Architecture Model with Interfaces and Requirement Links” on page 2-5

* “Extend Architectural Design Using Stereotypes” on page 2-19

* “Analyze Architecture Model with Analysis Function” on page 2-25

* “Inspect Components in Custom Architecture Views” on page 2-30

* “Implement Behaviors for Architecture Model Simulation” on page 2-37

The model-based systems engineering (MBSE) workflow enabled by System Composer involves
starting with stakeholder needs, identifying requirements and use cases, designing an architecture
iteratively, and implementing functionality using behavior models. You can also use analyses and
trade studies to optimize architectural design and communicate facets of the system using
architecture views. This figure illustrates an MBSE workflow.

Compose and Analyze Systems Using Architecture Models

Stakeholder Needs } > Requirements and Use Cases

Respond to Changes

Architecture Structure and Behavior €——> I 1

ﬂptlmlze Commm
System Characteristics Multiple Viewpoints

With System Composer, you can implement a systems engineering workflow.

1 Author architecture models and define system requirements:

Create hierarchical models of system structure that represent functional, logical, or physical
decompositions of the system using components, ports, and connectors.

Import models from MATLAB® tables and export them with System Composer changes.

Edit and view the instance-specific parameters specified as model arguments on a component
or architecture using the Parameter Editor.

Create and manage data interfaces between structural architectural elements using the
Interface Editor.

Manage model-to-model allocations to show relationships between software components and
hardware components and to indicate deployment strategies using the Allocation Editor.

Refine and elaborate requirements using Requirements Toolbox™ in the Requirements
Editor. Link requirements to architectural model elements.

2 Define metadata, generate views, describe system behavior, and analyze architectures:

Extend base architectural elements to create domain-specific conceptual representations
using the Profile Editor.

Filter views of the system structure using a component diagram, hierarchy diagram, or class
diagram in the Architecture Views Gallery.

2-3

2 Compose an Architecture Model

2-4

Represent the interaction between structural elements of an architecture as a sequence of
message exchanges with a sequence diagram in the Architecture Views Gallery.

Perform static analysis and trade studies to optimize architectures using the Instantiate
Architecture Model and the Analysis Viewer tools.

3 Implement component behavior and use simulation-based workflows to verify requirements:

Specify component behavior using block diagrams in Simulink, state machines in Stateflow®,
and physical interfaces in Simscape™ using subsystem behaviors.

Design a software architecture model, define the execution order of the functions from the
components in the Functions Editor, simulate the design at the architecture level, and
generate code.

Verify and validate requirements with Simulink Test™ using the Test Manager.

Generate reports using Simulink Report Generator™. For more information, see “System
Composer Report Generation for System Architectures”.

For definitions and applications of common System Composer terms and concepts, see “System
Composer Concepts” on page 3-2.

Create Architecture Model with Interfaces and Requirement Links

Create Architecture Model with Interfaces and Requirement

Links

In this section...

“Visually Represent System” on page 2-5
“Edit Data Interfaces” on page 2-13
“Decompose Components” on page 2-15
“Robot Arm Architecture Model” on page 2-16

“Manage Requirement Links” on page 2-17

Create an architecture model of a robot arm using System Composer. Define interfaces on ports and
link requirements on components. When you complete these steps, you will have created a completed
Robot model.

A Requirements Toolbox license is required to link, trace, and manage requirements in System
Composer.

For more information about the model-based systems engineering workflow within System Composer,

see “Compose and Analyze Systems Using Architecture Models” on page 2-2.

Visually Represent System

Implementing an architectural design starts with visually representing the system using components
and their connections. Create an architecture model, represent the system components, and draw the
connections between them.

Create Architecture Model
1 Enter this command in the MATLAB Command Window.
systemcomposer

The Simulink Start Page opens to System Composer.
2 (Click Architecture Model.

Use a System Composer Architecture Model to describe systems as a combination of structural
elements with underlying behavioral descriptions. Use a Software Architecture Model to easily
define the execution order of your functions from your components, simulate your design in the
architecture level, and generate code by linking your Simulink export-function, rate-based, or
JMAAB models to components.

For more information about software architecture models, see “Author Software Architectures”.

2-5

2 Compose an Architecture Model

Examples

™ Open All W E

Recent =
» Slatefiow
Projects

) w System Composer
% From Source Control =

Learn — —
(*p Simulink Onramp

Cp Statefiow Onramp {1:]

=[] Control Design Onramp with Simulink Architecture Modsl = SR A ot

> LAV Toolbox Support Package for BX4 Autopilols
* Vehicle Dynamics Blockset
» Vision HDL Toolbox

» Wireless HDL Toolbox

A new, blank architecture model canvas opens. You can identify an architecture model by the
badge in the lower left corner and the component palette on the left side.

2-6

Create Architecture Model with Interfaces and Requirement Links

SIMULATION DEBUG MODELING FORMAT

({ Find ~ g %
@ = . 2 &y E5
a >

Model = -OMPArE Interface Profile Apply
Advisor + i Environment ~ Editor Editor ~ Stereotypes

MAMNAGE DESIGN PROFILES

APPS

COMPOMNENT

® o & e

Architecture Analysis

Views =

Model ~
VIEWS

Allocation
Editor

= I

Update
Model ~ Fast Restart
COMPILE SIMULATE

@

(v]

untitled

untitled

@®

untitled

falc e We BRCH -

O B &

Interfaces

Ready

100%

VariableStepAuto

]

Jopadsu] Ayadald

3 Double-click the architecture model header and change untitled to a descriptive model name,
for example, RobotDesign. The name of the model generally reflects the system whose

architecture you are building.

2-7

2 Compose an Architecture Model

2-8

SIMULATION DEBUG MODELING FORMAT APPS 5258 @ (v}
({ Find ~ g = % =" Stop Time
@ 2 % & ® B &2 &
) - - - - - S -
Maodel LS Inter‘face Profile Apply FELERS (=S SIS Architecture Analysis Allocation Update -
Advisor + i Environment ~ Editor Editor ~ Stereotypes chitect oftware mulin Views v~ Model v Editor Model = Restart
MANAGE DESIGN PROFILES COMPONENT VIEWS COMPILE SIMULATE ry
Robot | @
)
® |Rabat - 3
Ey z
& | |Robot B
a
O
» [
Interfaces
Ready 100% VariableStepAuto

4 Save the model.

Draw Components

Design a mobile robotic arm where a sensor senses position and trajectory planning computes a path
to a location that the robot needs to reach using motion. An architecture model of such a system

could consist of three primary components: Sensors, Trajectory Planning, and Motion. You can
represent these components in System Composer using three Component blocks.

1 Click and drag a Component [from the left-side palette.

Create Architecture Model with Interfaces and Requirement Links

SIMULATION MODELING FORMAT

(4 Find ~ 1 % E Stop Time | 10.0 » =
o % ® B &
) - z = = - — -
Model (1 tompare |ﬂtEE‘fECE Profile Apply = = Hr=siis Hr=slis Architecture Analysis Allocation Update == Run
Advisor = {1 Environment ~ Editor Editor = Stereotypes e e — Views *+ Model * Editor Madel = Fast Restart
MANAGE DESIGN PROFILES COMPONENT VIEWS COMPILE SIMULATE Y
Robot i} i?
® |2 Rabat A 3
ey g
&'| Robot B
£ E
O
» &b
Interfaces
Ready 100% VariableStepAuto

2 Rename the component as Sensors.
3 Follow these steps to create Trajectory Planning and Motion components.

2-9

2 Compose an Architecture Model

2-10

Robot

Sensors

Trajectory Planning Motion

Create Ports and Connections

You can begin to create connectivity between components by describing the flow of power, energy,
data, or any other representative information. Create ports on the components that provide or
consume information and connectors that bind two component ports to represent the flow of the
information.

You can add a port to a component on any side, and the port can have either an input or output
direction. To create a port, pause your cursor over a component side. Click and release to view port
options. Select either Input, Output, or Physical to create a port. Rename the port using a name
that represents the information that flows through that port.

1 Create an output port on the bottom side of the Sensors component. Rename it SensorData.

Create Architecture Model with Interfaces and Requirement Links

Robot

Sensors

SensorData

Trajectory Planning Motion

Click and drag a line from the SensorData output port to the Motion component. When you see
an input port created at the component side, release the pointer. By default, this new port has the

same name as the source port.

Pause on the corner of the SensorData line until you see the branch icon (. Right-click and
drag a branch line to the Trajectory Planning component.

2-11

2 Compose an Architecture Model

v
P
1
Q
8
=
@
SensorData 4’9 @‘v SensorData
4 Complete the connections as shown in this figure.
Encoder 4

Y

SensorData

SensorData <

> SensorData

Encoder [»
MotionCommand Ii'/ \B[MationCommand

2-12

Create Architecture Model with Interfaces and Requirement Links

The root level of the architecture model can also have ports that describe the interaction of the
system with its environment. In this example, the target position for the robot is provided by a
computer external to the robot itself. Represent this relationship with an input port.

1 Click the left edge of the architecture model and enter the port name TargetPosition.

2 Connect an architecture port to a component by dragging a line from the TargetPosition input
port to the Trajectory Planning component. Connections to or from an architecture port
appear as tags.

Robot

Sensor
Encoder 4

b~ i TargetPosition

Trajectory Planning Motion

SersorData

SensorData < > SansorData

TargetPosition ¢ b= TargetPc T
MotionCommand > MotionCommand

Edit Data Interfaces

You can define a data interface to fully specify a connection and its associated ports. A data interface
can consist of multiple data elements with various dimensions, units, and data types. To check for

consistency when connecting a port, you can also associate interfaces with unconnected ports during
component design.

Specify the information flow through a port between components by configuring the data interface
with attributes. A data interface can be as simple as sending an integer value, but it can also be a set

of numbers, an enumeration, a combination of numbers and strings, or a bundle of other predefined
interfaces.

Consider the data interface between the Sensors and the Motion components. The sensor data
consists of:

» Position data from two motors
* Obstacle proximity data from two sensors
* A time stamp to capture the freshness of the data

To open the Interface Editor, navigate to Modeling > Interface Editor.
Click the =5 button to add a data interface. Name the interface sensordata.

The data interface is named and defined separately from a component port and then assigned to
a port.

2-13

2 Compose an Architecture Model

2-14

Click the SensorData output port on the Sensors component. In the Interface Editor, right-
click sensordata and select Assign to Selected Port(s).

If you click sensordata again, the three SensorData ports are highlighted, indicating the ports
are associated with that interface.

Sensor
Encader <
A\

Trajectory Planning Motion

SensorData

) '

SensorData <:J \ih SensorData
[TargetPosition i b~ TargetPosition
MotionCommand = > MotionCommand

Encoder =

Add a data element to the selected data interface. Click the ©F button to add a data element and
name it timestamp.

Continue adding data elements to the data interface as specified by clicking the add data element
button.

Name Type Units
timestamp double seconds
positionl for motor 1 double degrees
position2 for motor 2 double degrees
distancel for sensor 1 double meters
directionl for sensor 1 double degrees
distance? for sensor 2 double meters
direction2 for sensor 2 double degrees

Edit the properties of a data element in the Interface Editor. Click on the cell corresponding to
the data element in the table and add units as shown in the specification.

Click the drop-down list next to the = button to save the data interface to a data dictionary. A
data dictionary allows you to collectively manage and share a set of interfaces among models. For
instance, later in the design, if you choose to model the external computer as a separate
architecture model, then this model and the Robot model can share the same data dictionary.
Here, the dictionary is saved as RobotDD.

Create Architecture Model with Interfaces and Requirement Links

Interfaces

W

|‘E "l':% ||3;5| |.£. '”#. "|.I' _l':.:; - |ﬂ,. || Search

* @ RobotDD .sldd

v & sensordata

timestamp
direction1
directionZ
distance1
distance2
position1

position2

double
double
double
double
double
double

double

Type

& ' Dictionary View -

seconds
degrees
degrees
meters
meters
degrees

degrees

Units

Decompose Components

Each component can have its own architecture. Double-click a component to decompose it into its

subcomponents.

1 Double-click the Trajectory Planning component. The Explorer Bar and Model Browser
indicates the position of the component in the model hierarchy.

Trajectory Planning

® 4 o« Ruhot 3 DTrajEftar',v Planning

|
g Trajectory Planning
(=l

TargetPosition

R e |

O B [

SensorData

MotionCommand

View 1 error

109% VariableStepAuto

2-15

2 Compose an Architecture Model

This component first uses the motor position data that is part of the sensordata interface to
compute the ideal position and velocity command. It then processes the obstacle distance
information in the same interface to condition this motion command according to some safety
rules.

2 AddMotion Control and Safety Rules components as part of the Trajectory Planning
architecture.

Drag the TargetPosition port to the Motion Control component. Add a Command output
port to Motion Control, then drag a line to the Safety Rules component. Drag lines from
the SensorData port to the Motion Control and Safety Rules components.

Trajectory Planning

SensorData 4

X Safety Rules
Motion Control

Senso SensorDat
et Bositic SensorDatalp—{ > SensorData
b H@TargetPosition SensorDatalp— > SensorData

Command > [Command
TargetPosition [[TargetPosition

MotionCommand

Robot Arm Architecture Model

Open the architecture model of a robot arm that consists of sensors, motion actuators, and a planning
algorithm. You can use System Composer to view the interfaces and manage the requirements for this
model.

2-16

Create Architecture Model with Interfaces and Requirement Links

® |_]Robot b hd

REacd wae

&

3

Robot

b - TargetPaosition

| i

Robot

Sensor

Encoder <

Trajectory Planning Motion

SensorData < b= SensorData

neoder [
TargetPosition [b TargetPosition Encoder [»
MotionCommand B B MoticnCommand

Manage Requirement Links

Requirements are integral to the systems engineering process. Some requirements relate to the
functionality of the overall system, and some relate to aspects of performance such as power, size,
and weight. Decomposing high-level requirements into low-level requirements and deriving additional
requirements is crucial to defining the architecture of the overall system. For instance, the overall
power consumption of the robot determines the requirement for the power consumption of the robot
controller.

To allocate and trace requirements with system elements, System Composer fully integrates with
Requirements Toolbox. To derive appropriate requirements, you must sometimes analyze and specify
properties (such as power) for elements of the system including components, ports, or connectors.
For example, if the total cost of the system is a concern, a unitPrice property is necessary.

Manage requirements from the Requirements Perspective in System Composer using Requirements
Toolbox. Navigate to Apps > Requirements Manager.

2-17

2 Compose an Architecture Model

LS| Robot s
© [F2Robat ¥ v
@ | Robot
| [#2: Endurance]
& Sensor B o
B
{#t3: Software A Epceigd / >
N 1
== \, IMPLEMENTS g
b= @ TargetPosition N\ v /\“
0 g
Trajectory Ii'lannir\._él g _Molion Ej
I | &
= SensgrData « [SensorData
TargetPosition [[TargetPosition Enzoden -
MotionCommand > B> MotionCommand
« | @&
(1|
Reguiremenis - Robot P
v [™| [B0E EEIE HEOE BE
v Iﬁl RobotReqs
B 1 #1 Smooth Movement
[E] #2 Endurance
E 3 #3 Software

To enhance the traceability of requirements, link requirements to architectural components and
ports. When you click a component in the Requirements Perspective, linked requirements are
highlighted. Conversely, when you click a requirement, the linked components are shown. To directly
create a link, drag a requirement onto a component or a port.

See Also

More About

. “Extend Architectural Design Using Stereotypes” on page 2-19

. “Analyze Architecture Model with Analysis Function” on page 2-25

. “Inspect Components in Custom Architecture Views” on page 2-30

. “Implement Behaviors for Architecture Model Simulation” on page 2-37
. “System Composer Concepts” on page 3-2

2-18

Extend Architectural Design Using Stereotypes

Extend Architectural Design Using Stereotypes

In this section...

“Mobile Robot Architecture Model” on page 2-19
“Load Architecture Model Profile” on page 2-20
“Apply Stereotypes to Model Elements” on page 2-22

“Set Properties” on page 2-23

You can add the unitPrice property to an electrical component using a stereotype. A stereotype
extends the modeling language with domain-specific metadata. A stereotype adds properties to the
root-level architecture, component architecture, ports, connectors, data interfaces, value types,
functions, requirements, and requirement links. You can also apply a stereotype to only a specific
element type, such as component architectures. When a model element has a stereotype applied, you
can specify property values as part of its architectural definition. In addition to allowing you to
manage properties relevant to the system specification within the architecture model, stereotypes
and associated properties also allow you to analyze an architecture model.

A profile contains a set of model element stereotypes with custom properties. Each profile contains a
set of stereotypes, and each stereotype contains a set of properties. For more information, see
“Extend Architectural Elements” on page 3-9.

For more information about the model-based systems engineering workflow within System Composer,
see “Compose and Analyze Systems Using Architecture Models” on page 2-2.

This example will show you how to compute the total cost of the system given the cost of its
constituent parts. The example profile is limited to this goal. Start this tutorial with the following
mobile robot architecture model without a profile applied. Use the model to follow the steps and
populate its elements with stereotypes and properties.

Mobile Robot Architecture Model

This example shows a mobile robot architecture model with no properties defined. You can apply the
stereotypes from the profile simpleProfile.xml.

Use the Property Inspector to set the properties on each component.

2-19

2 Compose an Architecture Model

[ex_Robotarch » v

ex_RobotArch

Sensors

.EI'DJCE" <]
W
I 4l TargetPosition a
2
Trajectory Planning : Motion
0
SensorData 4 [SensorData
TargetPosition [[TargetPositian Encoder [»
MotionCommand [> [MotionCommand

Load Architecture Model Profile

Load a profile to make stereotypes available for model elements. This procedure uses the model
ex_RobotArch.slx. Navigate to Modeling > Profile Editor to open the Profile Editor. Open the
profile file simpleProfile.xml to load the profile.

In the Profile Browser, select the sysConnector stereotype. Select Show inherited properties
(read-only) to view properties inherited from the base stereotype.

2-20

Extend Architectural Design Using Stereotypes

Profile EEL New Profile —j] Open | | ol Save |»

Profile Browser

Filter profiles: | <all>

Stereotype Properties

Stereotype EE} New Stereotype 23 Import into | Select |-

\
©
,

Name: |5\.rs{30nnect0r

v [=] simpleProfile
sysBaseStereotype
ﬁ sysComponent
sysConnector

Applies to: Connector

Connector style: | =-- 3

Base stereotype: simpleProfile.sysBaseStereotype

sgs(i;r::zlt [Abstract stereotype
Description: |
a8 v
Property name Type Name Unit Default
1 length double m 0
2 weight double kg/m 0
3 unitPrice double usD
4 totalPrice double uspD
Show inherited properties (read-only)
In the profile, observe these stereotypes.
Stereotype Application Properties
sysBaseStereot |components, ports, connectors unitPrice (double, USD,Default: 5)
ype
totalPrice (double, USD)
sysComponent components weight (double, kg)
Inherits properties from
sysBaseStereotype
sysConnector connectors length (double, m)
weight (double, kg/m)
Inherits properties from
sysBaseStereotype
sysGeneral components, ports, connectors ID (int16)
Note (string)
sysPort ports Inherits properties from
sysBaseStereotype

Importing the profile makes stereotypes available to their applicable elements.

2-21

2 Compose an Architecture Model

2-22

sysBaseStereotype stereotype, applicable to all element types, includes shared properties such
as unitPrice and totalPrice.

sysComponent stereotype applies only to components, and includes properties such as weight
that contributes to the total weight and properties inherited from the sysBaseStereotype
stereotype with cost specifications of the robot system.

sysConnector stereotype applies to connectors and includes length and weight properties
defined per meter (assuming a physical connector, such as a wire). These properties and the
properties inherited from the sysBaseStereotype stereotype help compute the total weight and
cost of the design.

sysGeneral is a general stereotype, applicable to all element types, that enables adding generic
properties such as a Note, which project members can use to track any issues with the element.

sysPort stereotype applies to ports and does not include any properties except those inherited
from sysBaseStereotype.

Apply Stereotypes to Model Elements

Add custom properties to a model element by applying a stereotype from a loaded profile.

1

On the toolstrip, navigate to Modeling > Profile Editor > Import B
Select simpleProfile.

On the toolstrip, navigate to Modeling > Apply Stereotypes to open the Apply Stereotypes
dialog box.

From Apply stereotype(s) to, select ALl elements. From Scope, select This layer.

In the list of available stereotypes, select simpleProfile.sysGeneral.

Extend Architectural Design Using Stereotypes

Apply Stereotypes — | W

Apply stereotypes to selected elements, all elements in the current
layer, or the entire model.

Apply stereotype(s) to: |All elements -
Scope: |This layer -
[] Include children

simpleProfile.sysBaseStereotype

simpleProfile.sysGeneral

Apply Close Help

Click Apply.
5 From Apply stereotype(s) to, select Components. From Scope, select Entire model.

In the list of available stereotypes, select simpleProfile.sysComponent.

Click Apply.
6 From Apply stereotype(s) to, select Connectors. From Scope, select Entire model.

In the list of available stereotypes, select simpleProfile.sysConnector.

Click Apply.
7 From Apply stereotype(s) to, select Ports. From Scope, select Entire model.

In the list of available stereotypes, select simpleProfile.sysPort.

Click Apply.

Set Properties

Set the property values to enable cost analysis. Follow this example for the GPS module.

1 Inthe Sensors component, select the GPS component.
2 Open the Property Inspector by navigating to Modeling > Property Inspector.
3 Expand the sysComponent stereotype to see the properties.

2-23

2 Compose an Architecture Model

4 SetunitPrice to 10 and press Enter.

5 Select the GPSData port connector. Check that length is set to 3, weight is set to 12, and that
unitPrice is set to 5.

EE 6

O B &

> e

W Sensors

ex_RobotArch_props 4 DSensors >

Sensors

GPS ﬁ
GPSData [~
GyroData {E
i
Encoder -1 b 1nBus MatianData [-

&

i InBus

ol

Sansoata <@

===l B RawData

DataProcessing {E

OulBus [- --lSensorData

Enciode

<

Property Inspector
‘Connector

Connector

@

 Port selection
Source
Destination
Connector
Stereotype
¥ sysConnector
length
weight
unitPrice
total Price

GPsData

In

GP5Data -> In
Add..

Select

3im

12 kg/m

5UsD

ousD

2-24

6 Finish defining metadata across the model for each element using desired property values. Pin
the Property Inspector to the editor to keep the Property Inspector visible during this

operation.

Note You can use the ex RobotArch props architecture model for analysis and view
generation because the model includes property values. For more information on analysis, see
“Analyze Architecture Model with Analysis Function” on page 2-25. For more information on
architecture views, see “Inspect Components in Custom Architecture Views” on page 2-30.

See Also

More About

. “Create Architecture Model with Interfaces and Requirement Links” on page 2-5
. “Analyze Architecture Model with Analysis Function” on page 2-25

. “Inspect Components in Custom Architecture Views” on page 2-30

. “Implement Behaviors for Architecture Model Simulation” on page 2-37

. “System Composer Concepts” on page 3-2

Analyze Architecture Model with Analysis Function

Analyze Architecture Model with Analysis Function

In this section...

“Mobile Robot Architecture Model with Properties” on page 2-25
“Perform Analysis” on page 2-26

With properties specified on model elements, you can use MATLAB to perform analysis and calculate
total cost for all elements within the design. You can then create additional derived requirements for
the designers of individual components in the system, such as Trajectory Planning or Sensors.

Perform static analyses based on element properties to perform data-driven trade studies and verify
system requirements. Consider a robot architecture model where total cost is a consideration. For
this tutorial, you will use the mobile robot architecture model with properties to perform static
analysis.

For more information about the model-based systems engineering workflow within System Composer,
see “Compose and Analyze Systems Using Architecture Models” on page 2-2.

Mobile Robot Architecture Model with Properties

This example shows a mobile robot architecture model with stereotypes applied to components and
properties defined.

2-25

2 Compose an Architecture Model

2-26

ex_RobotArch_props

Sensors {E
Encoder o - m-ommeemeems o
w '
b+ 4l TargetPosition a i
o ! ;
Trajectory Plannlrﬁ g Motion {F i
I'E 1 !
i :
SensorData <) - - - e b+ SensorData !
TargetPosition[---+ B TargetPosaition Encoder B - '
MotionCommand B - - —meim e b MotionCommand

&l

Perform Analysis

Analyze the total cost for all components in the robot model. This procedure uses the model
ex_RobotArch props.slx.

Navigate to Modeling > Analysis Model to open the Instantiate Architecture Model tool.
Add an analysis function. In the Analysis function box, enter the function name

ex RobotArch analysis new without an extension, and then click the + button. A MATLAB
function file is created and saved with the name ex RobotArch analysis new.m.

Analyze Architecture Model with Analysis Function

Instantiate Architecture Model

Description

Create an instance model from this architecture model by flattening out all referenced models and their components. Such an

instance model may be used for system-level analysis expressed as MATLAB functions.

Step 1: Select Stereotypes Step 2: Configure Analysis

Function
Select the sterectypes to make available on

the instance model. Analysis function:

|ex_Ro botaArch_analysis_new

b simpleProfile Function arguments (comma-separated):

sysBaseStereotype |

sysComponent
sysConnector

sysGeneral Model Iteration
sysPort

»» ex_RobotArch_analysis_new(instance)

Iteration Order: | Bottom-up

Instance Model Properties

Name: |ex_H0botAr~c h_props

[mormalize Units

Strict Mode

Don't see your profile? | Profile Editor ...

3¢ cancel| | > Instantiate

The analysis function includes constructs that get properties from model elements, given as a
template. Modify this template to add the cost of individual elements and obtain total cost for
their parent architecture. This function computes the cost for one model element as a total of its
own cost and the cost of all of its child components. Copy and paste the function below into your

analysis function.
function ex RobotArch _analysis new(instance,varargin)

if instance.isComponent()
if instance.hasValue("sysBaseStereotype.unitPrice")
sysComponent_totalPrice = instance.getValue('"sysBaseStereotype.unitPrice");
else
sysComponent_totalPrice = 0;
end
if ~isempty(instance.Components)
for child = instance.Components
if child.hasValue("sysBaseStereotype.totalPrice")
comp_price = child.getValue("sysBaseStereotype.totalPrice");
sysComponent_totalPrice = sysComponent totalPrice + comp price;
end
end
end
sysPort_totalPrice = 0;
for port = instance.Ports
if port.hasValue("sysBaseStereotype.unitPrice")
unitPrice = port.getValue("sysBaseStereotype.unitPrice");

2-27

2 Compose an Architecture Model

end
end

sysPort_totalPrice = sysPort totalPrice + unitPrice;
end
end
sysConnector_totalPrice = 0;
for connector = instance.Connectors
if connector.hasValue("sysBaseStereotype.unitPrice")
unitPrice = connector.getValue("sysBaseStereotype.unitPrice");
length = connector.getValue("sysConnector.length");
sysConnector_totalPrice = sysConnector totalPrice + unitPrice*length;
end
end
if (instance.hasValue("sysBaseStereotype.totalPrice"))
totalPrice = sysComponent totalPrice + ...
sysPort_totalPrice + sysConnector totalPrice;
instance.setValue("sysBaseStereotype.totalPrice",totalPrice);
end

Return to the Instantiate Architecture Model tool, select all the stereotypes, and click
Instantiate. The Analysis Viewer opens and shows the properties of each model element. The
default values for the start of the analysis are taken from the property values you entered when
you attached the stereotype to the model and edited their values.

In the Analysis section, select BottomUp as the iteration method, then click Analyze.

The cost of each element is added bottom-up to find the cost of the system. The result is written

to the analysis instance and is visible in the Analysis Viewer.

I=7 Instances totalPrice unitPrice weight length weight 1D
4 [ex_RobaotArch_props 814 5 0
4 O Motion 165 150 [
o Encoder 0 5
»o MotionCommand 0 5
»o SensorData 0 5
4 (3 Sensors 234 78]
4 O Adapter 5 5 0
= Adapter:In->Adapter:Out 0 5 0 0
« o DataProcessing 66 56 5
—» OutBus 0 5
»o RawData 0 5
4« g GPS 10 5 47
—» GPSData 0 5
« o GyroData 15 5 21
»o InBus 0 5
o MotionData 0 5
+ Adapter:Out->DataProcessing:RawData 0 5 2 12
- DataProcessing: QutBus->Sensors:SensorData 0 5 1 12
+ GPS:GPSData-»Adapter:In 0 5 3 12
= GyroData:MotionData->Adapter:InBus 0 5 3 12
= Sensors:Encoder->GyroData:InBus 0 5 1 12
»o Encoder 0 5
—» SensorData 0 5
4 3 Trajectory Planning 285 45]
4 O MotionController 5 &0 4
»>o SensorData 0 5
»o TargetPosition 0 5
—» command 0 5
« O SafetyRules 95 80 4
—» OutBus 0 5
»>o SensorData 0 5
»o command 0 5

The total costs are highlighted in yellow as computed values. The top row represents the grand

total for the ex RobotArch props architecture.

2-28

Analyze Architecture Model with Analysis Function

See Also

More About

“Create Architecture Model with Interfaces and Requirement Links” on page 2-5
“Extend Architectural Design Using Stereotypes” on page 2-19

“Inspect Components in Custom Architecture Views” on page 2-30

“Implement Behaviors for Architecture Model Simulation” on page 2-37

“System Composer Concepts” on page 3-2

2-29

2 Compose an Architecture Model

Inspect Components in Custom Architecture Views

2-30

In this section...

“Mobile Robot Architecture Model with Properties” on page 2-30
“Create Spotlight Views from Components” on page 2-31
“Create Filtered Architecture View” on page 2-32

View the hierarchy and connectivity of a component in a specialized view. Specialized views allow you
to create simpler diagrams that show only a subset of the original model elements for a specific
design activity or concern.

For more information about the model-based systems engineering workflow within System Composer,
see “Compose and Analyze Systems Using Architecture Models” on page 2-2.

Use the following System Composer architecture model in this tutorial.

Mobile Robot Architecture Model with Properties

This example shows a mobile robot architecture model with stereotypes applied to components and
properties defined.

Inspect Components in Custom Architecture Views

ex_RobotArch_props

Sensors {E
Encoder o - m-ommeemeems o
w '
b+ 4l TargetPosition a i
o ! ;
Trajectory Plnnnlrﬁ g Motion {F i
I'E 1 !
i :
SensorData <) - - - e b+ SensorData !
TargetPosition[---+ B TargetPosaition Encoder B - '
MotionCommand B - - —meim e b MotionCommand

&l

Create Spotlight Views from Components
Create views dynamically using spotlight views.

Double-click the Sensors component, then select the DataProcessing component.

2 Select the DataProcessing component and navigate to Modeling > Architecture Views >
Spotlight. Alternatively, right-click the DataProcessing component and select Create
Spotlight from Component.

The spotlight view launches and shows all model elements to which the DataProcessing
component connects. The spotlight diagram is laid out automatically and cannot be edited.
However, it allows you to inspect just a single component and study its connectivity to other
components.

Note Spotlight views are transient. They are not saved with the model.

2-31

2 Compose an Architecture Model

ex_RobotArch_props

Sensors i

Sensors/DataProcessing i

Trajectory Planning/SafetyRules ¥

3 Shift the spotlight to another component. Select the Motion component. Click the ellipsis above
the component to open the action menu. To create a spotlight from the component, click @

ex_RobotArch_props) g

Sensors O

Sensors/DataProcessing iF
Trajectory Planning/MotionController U
- — - — (- RewDain Ouiius ES H A Trajectory Planning/SafetyRules

To view the architecture model at the level of a particular component, select the component and

click |:|

ex_RobotArch_props X y

Sensors I

Sensors/DataProcessing iF

" ’\,}:'a*

B — o — - (o RawData Outfus i Frease . Trajectory PlanningiSafetyRules

Sensordn

4
To return to the architecture model view, click O

You can make the hierarchy and connectivity of a component visible at all times during model
development by opening the spotlight view in a separate window. To show the spotlight view in a
dedicated window, in the component context menu, select Open in New Window, then create the
spotlight view. Spotlight views are dynamic and transient: any change in the composition refreshes
any open spotlight views, and spotlight views are not saved with the model.

Create Filtered Architecture View

Create filtered architecture views to demonstrate specific perspectives with a component diagram or
a hierarchy diagram.

1 Navigate to Modeling > Architecture Views to open the Architecture Views Gallery.

2-32

Inspect Components in Custom Architecture Views

Select "’ New > View to create a new view.

3 In View Properties on the right pane, in the Name box, enter a name for this view, for example,
System Elements. If necessary, choose a Color and enter a Description.

View Browser System Elements View Properties
Search Q|| views » System Elements Name Value
- 5 Views 4 Main

D System Elements Name

4 sauence Disgrams [[]System Elements o

Description

Model Components

Search Q]

- ex_RobotArch_props

™ Motion
~ [sensors
Adapter
[DataProcessing - -
M s View Configurations
FILTER GROUPING

[GyroData

_ |, Add component Fitter |~ Auto Apply
- D Trajectory Planning A A)

D MotionController E COMPONENT FILTER
[safetyRules

& No filter specified. Use the "Add Component Filter” button to build a new filter or choose "Select All Components” to bring all elements into view.

»

4 In the bottom pane on View Configurations, from the Filter tab, click Add Component Filter
to add new form-based criterion to a component filter.

5 From the Select list, select Components. From the Where list, select Stereotype. In the text
box, select simpleProfile.sysComponent from the list.

View Configurations
FILTER GROUFPING

[, Add ComponentFilter |« | |bF Add PortFilter |« | |« Apply| | <@ Revert Auto Apply Basic | Code

:'-, COMPONENT FILTER

Select Components - Where Stereotype - isa - simpleProfile sysComponent -

b

Click Apply ¥ .
An architecture view is created using the query in the Component Filter box. The view is

filtered to select all components with the simpleProfile.sysComponent stereotype applied to
them.

2-33

2 Compose an Architecture Model

[system Elements

Sensors

GyroData

[

7

.

DataProcessing |/

Y -

Tt

in tree form with parents above children.

[System Elements

MotionController a

SafetyRules

In the Diagram section of the toolstrip, click Component Hierarchy to display the components

Motion f} { Sensors L Trajectory Planning I
«sysBaseStereotyper «sysBaseStereotype» «sysBaseStereotype»
‘totalPrice: double (USD) = 0 totalPrice: double (USD) =0 totalPrice: double (USD) = 0
unitPrice: double (USD) = 150 unitPrice: double (USD) = 78 unitPrice: double (USD) = 45
«sysComponents «sysComponent» «sysComponents
weight double (kg) = 7 weight double (kg) = 0 weight double (kg) = 0
Ports Ports Ports
in MotionCommand in Encoder in SensorData
in SensorData out SensorData in TargetPosition
out Encoder out MotionCommand
DataProcessing q { GPS El ‘ GyroData Z| | MotionController El { SafetyRules S
«sysBaseStereotyper «sysBaseStereotypes «sysBaseStereotype» «sysBasestereotypen «sysBasestereotypes
totalPrice: double (USD) = 0 totalPrice: double (USD) =0 totalPrice: double (USD) = 0 totalPrice: double (USD) = 0 totalPrice: double (USD) =0
unitPrice: double (USD) = 56 unitPrice: double (USD) = 5 unitPrice: double (USD) = 5 unitPrice: double (USD) = 60 unitPrice: double (USD) = 80
«sysComponent» «sysComponents «sysComponents «sysComponent» «sysComponents
weight: double (kg) = 5 weight double (kg) = 47 weight: double (kg) = 21 weight: double (kg) = 4 weight: double (kg) = 4
Ports Ports Ports Ports
in RawData out GPSData in InBus
out QutBus

out MotionData

in SensorData
in TargetPosition
out command

Ports
in SensorData
in command
out OutBus.

In the Diagram section of the toolstrip, click Architecture Hierarchy to display unique

architecture types and their relationships using composition connections.

2-34

Inspect Components in Custom Architecture Views

. System Elements

ex_RobotArch_props

tolaiPrice: double (USD) =10

unilPrice: double (USD} =5
wsysComponents

weight: double (kgl =10
Ports:

in TargetPuasilion

L]

SafetyRules i
N N Fi] asysBaseSierectypes
Trajectory Planning ttalPrice: dauble (USD) = 0
usysBaseSiereatypes unitPrice: double (USD) = B0
talalPrice: doubile (USD) =0 asysCompanenis
unitPrice: double (USD) = 46 e \wmighl: doubike (kg) = 4
usymCompanents Parts
g weight: double (kg) =0 in Sensorliata
Ports in command
in SensorDala ——— | out OuwlBus
in TargelPasition
out MoliocnCommand
L . MationContraller i
asysBazeSierectypas
fotalPrice: double (USD) = 0
wnitPrice: doubile (USD) = 80
asysCaompananis
- waight: double {kg) = 4
in Sensorlala
in TarpePo=ition
aul command
GyroData i
;} fotalPrice: double (USD) =0
I | unitPrice: double (USD) = &
esysBaseSterealypes azysCampanants
tatalPrice: double (USD) =0 u weighl: daubile {kg) = 21
unitPrice: double (USD) = 76 Paris
| usy=Companents - | in InBu=
wizight: dooble (kg) =0 out MationData
Ports
in Encader -
out SensorDals
GP3 ﬂ
asysBazeSierectypas
. fotalPrice: double (USD) = 0
Mot 8
I on unitPrice: doubile (USD) = §
enysSaza Slerealyper - azysCampanerts
tatalPrice: double (USD) =0 weight: daubile {kg) = 47
unitPice: double {US0} = 150 Paris
wsysCompanents ol CGPSData
— weight: double (kg) =7
Ports
in MalionCommand
in SensorData DataProcessing {i
out - Encader asysBaseSierectypes
fotalPrice: double (USD) =0
wnitPrice: doubile (USD) = 56
| |azysCompanents
weight: doubks (kg = &
in FawData
ol OulBus

2-35

2 Compose an Architecture Model

2-36

See Also

More About

“Create Architecture Model with Interfaces and Requirement Links” on page 2-5
“Extend Architectural Design Using Stereotypes” on page 2-19

“Analyze Architecture Model with Analysis Function” on page 2-25

“Implement Behaviors for Architecture Model Simulation” on page 2-37

“System Composer Concepts” on page 3-2

Implement Behaviors for Architecture Model Simulation

Implement Behaviors for Architecture Model Simulation

In this section...

“Robot Arm Architecture Model” on page 2-37

“Reference Simulink Behavior Model in Component” on page 2-38
“Add Stateflow Chart Behavior to Component” on page 2-41

“Design Software Architecture in Component” on page 2-42
“Represent System Interaction Using Sequence Diagrams” on page 2-44

A basic systems engineering workflow in System Composer includes composing an architecture
system, defining requirements, adding metadata, performing analyses, and representing the
architecture through views. After fulfilling these steps, your system design is closer to meeting
stakeholder goals and customer needs.

You can also now begin to design the actual system components using Simulink, Stateflow, and
Simscape. You can fully specify, test, and analyze the behavior of a component using the model-based
design process.

For more information about the model-based systems engineering workflow within System Composer,
see “Compose and Analyze Systems Using Architecture Models” on page 2-2.

In this tutorial, you will perform these steps on the robot arm architecture model.

Robot Arm Architecture Model

Open the architecture model of a robot arm that consists of sensors, motion actuators, and a planning
algorithm. You can use System Composer to view the interfaces and manage the requirements for this
model.

2-37

2 Compose an Architecture Model

Robaot it
® [_]Robot b hd

Robot

EYR o RO

H

Sensor

Encoder <

(2] [l E
2|

b - TargetPaosition =

A Trajectory Planning i Motion
SensorData < b= SensorData
(Fa| o ecder
TargetPosition [I+ TargetFosition Encoder b
MotionCommand [b MotionCommand

(84
» i &ia

Reference Simulink Behavior Model in Component

When a component does not require further architectural decomposition, you can enable model
simulation and an end-to-end workflow. To enable model simulation, implement Simulink behaviors
for components. You can associate a Simulink model with a component or link to an existing Simulink
model or subsystem.

1 Navigate to Modeling > Create Simulink Behavior. Alternatively, right-click the Motion
component and select Create Simulink Behavior.

2 From the Type list, select Model Reference. Provide the model name MotionSimulink. The
default name is the name of the component.

2-38

Implement Behaviors for Architecture Model Simulation

Create Simulink behavior

Create a Simulink behavior and, optionally,
export local interfaces to a new shared data dictionary.

Type Model Reference

New file name: |[MotionSimulink

From Simulink template:
Default

New data dictionary name:
RobotDD.sldd

Cancel

Browse...

Help

3 A new Simulink model file with the provided name is created in the current folder. The root-level

ports of the Simulink model reflect the ports of the component. The component in the

architecture model is linked to the Simulink model. The i icon on the component indicates that
the component has a Simulink behavior.

W Motion

Robot 4 @Motion (MotionSimulink)

1

«

®

Motion i &

< MotionSimulink = —
I+ SensorData

. Encoder [

[+ MotionCommand —

%]

&

SensorData @

MotionCommand @

i

@ Encoder

4 To view the interfaces on the SensorData port converted into Simulink bus elements, double-
click the port in Simulink.

2-39

2 Compose an Architecture Model

Robot 4 EMotion (MotionSimulink)

®

Properties of input port: SensorData =

Select elements of a bus or the entire bus, signal, or message from the
SensorDala@ L IHiEiE

MotionCommand @ Port name: | SensorData Port number: | 1 Set color »

OEmE L E®

Al SliE | Filter..
v BensorDatd

timestamp
direction?
direction2
distance1

distance2

position1 (dt: d

position2 (dt: d

5 To remove model behavior, right-click the linked Motion component and select Inline Model.

You can also link to an existing Simulink behavior model from a System Composer component,
provided that the component is not already linked to a reference architecture. Right-click the
component and select Link to Model. You can type or browse for the name of a Simulink model.

You can also link a referenced Simulink subsystem behavior to a component. Use subsystem
references to author Simulink or Simscape behaviors with physical ports, connections, and blocks.

1 Navigate to Modeling > Create Simulink Behavior. Alternatively, right-click the Motion
component and select Create Simulink Behavior

2 From the Type list, select Subsystem Reference. Provide the model name MotionSubsystem.
The default name is the name of the component.

Create Simulink behavior - O *

Create a Simulink behavior and, optionally,
export local interfaces to a new shared data dictionary.

Type Subsystem Reference -

New file name: | MotionSubsystem Browse...

From Simulink template:
Default =

New data dictionary name:

RobotDD.sldd

Cancel Help

3 A new Simulink subsystem file with the provided name is created in the current folder. The root-
level ports of the Simulink subsystem reflect the ports of the component. The component in the

architecture model is linked to the Simulink subsystem. The [=licon on the component indicates
that the component has a Simulink subsystem behavior.

2-40

Implement Behaviors for Architecture Model Simulation

. =l
Motion

< MotionSubsystem >

> SensorData
Encoder >

L MotionCommand

Add Stateflow Chart Behavior to Component

To implement event-based modeling with state machines, add Stateflow chart behavior to a
component. State charts consist of a finite set of states with transitions between them to capture the
modes of operation for the component. This functionality requires a Stateflow license.

A System Composer component with stereotypes, interfaces, requirement links, and ports, is
preserved when you add Stateflow Chart behavior.

1 Right-click the Sensor component and select Create Stateflow Chart Behavior.
Alternatively, select the Sensor component, then navigate to Modeling > Create Stateflow
Chart Behavior.

2 Double-click Sensor, which has the Stateflow icon. From the Modeling menu, click Symbols
Pane to view the Stateflow symbols. The input port Encoder appears as input data in the
symbols pane and the output port SensorData appears as output data.

hd D Trajectary Planning

Model Browser = @ <2 4r | Sensor iy Symbeols
b okt _ @ |[Frobot » T3 sensor W EAED =@ -7
D Mation
Fﬁ Sensor TYPE VALUE RT

Encoder 1
D Motion Control

I
D Safety Rules iy

SensorData 1

@Oy o0 B s

3 Select the SensorData output and view the interface in the Property Inspector. You can access
this interface like a Simulink bus signal.

2-41

2 Compose an Architecture Model

Property Inspector

SensorData
Properties Info
Scope

Port

Size

Type

Initial value
» Logging

» Advanced

Symbols

i | 3| &2

D e

I
()

Output

1

O

-1

| Bus: sensordata

=@ -|¥

Encoder

SensorData

Design Software Architecture in Component

To design a software architecture, define function execution order, simulate, and generate code,
create a software architecture from a System Composer component.

1 Rename the Trajectory Planning component to TrajectoryPlanning so that it is a valid C

variable name.

2 Right-click the TrajectoryPlanning component and select Create Software
Architecture Model, or, navigate to Modeling > Create Software Architecture Model.

3 Specify the name of the software architecture as TrajectorySoftware. Click OK.

2-42

Implement Behaviors for Architecture Model Simulation

Create a software architecture model from a component — O X

Create a software architecture model from the component and,
optionally, export local interfaces to a new shared data dictionary.

New model name: |Trajectory50ftware | | Browse...

From architecture template:
Default ™

New data dictionary name:
RobotDD.sldd

[ok | cancel | Hep

4 The software architecture model TrajectorySoftware.slx is referenced from the
TrajectoryPlanning component.

[I
TrajutaryPlanning

SensorData < —

TargetPosition Jp— I+ TargeiPgsiion — I
| MotionCommand = 1—

5 Double-click the TrajectoryPlanning component to interact with the TrajectorySoftware
software component.

=] 4 TrajectoryPlanning

® |2 Rrobot P [F) TrajectoryPlanning (TrajectorySoftware) b
Q TrajectorySoftware
- t= 4l TargetPosition Rules

A Motion Control | g

X 5 rCatap— > SensorData .
SensorDiatap—[» SensorData ‘ ensorData | MotionCommand |
E | Command [» ——— > Command

TargetPosition p— > TargetPosition |
{~ 1l SensorData | |

2-43

2 Compose an Architecture Model

Represent System Interaction Using Sequence Diagrams

To represent the interaction between structural elements of an architecture as a sequence of
message exchanges, use a sequence diagram in the Architecture Views Gallery.

Observe the robot arm architecture model consisting of components, ports, connections, and
behaviors. The model simulation results must match the interactions within the sequence diagrams.

2-44

Robot TT
® RGl:uGt 4 -
&, | Robot
EJ Hy

Sensor =
Encoder «
= v
[» il TargetPosition o
e]
TrajectoryPlanning & Motion -pa
< Trajeciory Software = o < MationSimulink =
— SensorData < [SensorData
B TargetPosition p—{ 1> TargetPgaition | : Encader b
MotionCommand [[MotionCommand
[|
| ina
=
1 Create a new sequence diagram by navigating to Modeling > Sequence Diagram. The

Architecture Views Gallery opens. To create a new sequence diagram, click ' 1 New >
Sequence Diagram.

A new sequence diagram called SequenceDiagraml is created in the View Browser, and the
Sequence Diagram tab becomes active. Under Sequence Diagram Properties, rename the
sequence diagram RobotArmSequence.

Select Component > Add Lifeline EII:::' to add a lifeline. A new lifeline with no name is created
and is indicated by a dotted line.

Click the down arrow and select Sensor. Add a second lifeline named Motion.

Select the vertical dotted line for the Sensor lifeline. Click and drag to the Motion lifeline. In
the To box, start to type Sensordata and choose SensorData from the drop down menu. A
message is created from the SensorData port on the Sensor component to the SensorData
port on the Motion component.

Click on the message to see where to place the message condition. Enter a message trigger
condition in the form:

rising(SensorData.distancel-1)

Implement Behaviors for Architecture Model Simulation

The signal name is a data element on a data interface. The message will be recognized at the
zero-crossing event when the value of SensorData.distancel rises to 1.

RobotArmSequence

Sensor Motion J‘"‘ﬁ

Lo

rising(SensorData.distance1-1)

SensorData | F:Sensor[}a’[a

| I
| I
| I
I I

See Also

More About

. “Create Architecture Model with Interfaces and Requirement Links” on page 2-5

. “Extend Architectural Design Using Stereotypes” on page 2-19

. “Analyze Architecture Model with Analysis Function” on page 2-25
. “Inspect Components in Custom Architecture Views” on page 2-30
. “System Composer Concepts” on page 3-2

2-45

System Composer Terminology

3 System Composer Terminology

System Composer Concepts

System Composer combines concepts from systems engineering with concepts from Simulink. This
page defines these concepts and their respective applications help you understand how these
domains overlap in System Composer. Based on your architectural modeling goal, review the
corresponding section to learn more about key concepts associated with that goal.

Use this page to learn about System Composer concepts and how they apply to systems engineering
design. Each section defines a concept, explains how the concept is used in System Composer, then
links to more information in the documentation.

Author Architecture Models

An architecture model in System Composer consists of the common Simulink constructions:
components, ports, and connectors. An architecture represents the system of components.

archModel

Power

b HifjPowerSource
owerSource— B PowerSource

architecture port

TN

component

Robot

Wire [~ B Wira

/ N\

component port

behaviorally.

connector
7

Term Definition Application More Information

architecture |A System Composer Different types of * “Compose Architectures
architecture represents a architectures describe Visually”
system of components and |different aspects of systems. |, «author Parameters in
how they interface with You can use views to System Composer Using
each other structurally and |visualize a subset of et B

components in an
architecture. You can define
parameters on the
architecture level using the
Parameter Editor.

3-2

System Composer Concepts

Term Definition Application More Information
model A System Composer model |Perform operations on a “Create Architecture Model
is the file that contains model: with Interfaces and
architectural information, Requirement Links” on page
including components, * Extract the root-level 2.5
ports, connectors, architecture contained in
interfaces, and behaviors. the model.
* Apply profiles.
* Link interface data
dictionaries.
* (Generate instances from
model architecture.
A System Composer model
is stored as an SLX file.
component |A component is a nontrivial, |Represented as a block, a “Components”
nearly independent, and component is a part of an
replaceable part of a system |architecture model that can
that fulfills a clear function |be separated into reusable
in the context of an artifacts. Transfer
architecture. A component |information between
defines an architectural components with:
element, such as a function,
a system, hardware, * Port interfaces using the
software, or other Interface Editor
conceptual entity. A * Parameters using the
component can also be a Parameter Editor
subsystem or subfunction.
port A port is a node on a There are different types of |“Ports”
component or architecture |ports:
that represents a point of
interaction with its *+ Component ports are
environment. A port permits | interaction points on the
the flow of information to component to other
and from other components components.
or systems. * Architecture ports are
ports on the boundary of
the system, whether the
boundary is within a
component or the overall
architecture model.
connector Connectors are lines that A connector allows two “Connections”

provide connections
between ports. Connectors
describe how information
flows between components
or architectures.

components to interact
without defining the nature
of the interaction. Set an
interface on a port to define
how the components
interact.

3-3

3 System Composer Terminology

Manage Variants

Create variant components and implement multiple design alternatives or variants, chosen based on
programmatic rules. Add variant choices to any component to make a variant component. The active
choice represents the original component.

Robot (Variant)

variant component active choice

RobotDesign
b= Wire
Robot
Choice
b Wire . variant
r
i
Term Definition Application More Information
variant A variant is one of many Use variants to quickly “Create Variants”
structural or behavioral swap different architectural
choices in a variant designs for a component
component. while performing analysis.
variant A variant control is a string |Set the variant control to “Set Variant Control
control that controls the active programmatically control Condition”
variant choice. which variant is active.

Manage Interfaces

Assign interfaces to ports using the Interface Editor in Dictionary View. Use an Adapter block to
reconcile differences between interfaces on a connector between ports.

3-4

System Composer Concepts

archModel B
[FarchModel » -
@ | |archModel
Ed
= Chaioe
1> fliPowerSource OoWirelgsssignal | - . -
—H Wirs b ¢ e Wi
PowsrSourceBb—{ PowsrSoues | " out =~
= ; &
- adapter
=
=
Interfaces
S -5 % (&][] [&]-|&]|[searen q
[Dictionary View -]
/ interface data dictionary Type Dimansions Uniits
~ |@ archDictionary.sldd
~ & Charger+—data interface
oltage {VollageType]\ VoltageType 1
Wiring «— data element | double 1 m
~ & RobotPower
RobotVoltage (VoltageType) | VoltageType 1
Wires double 1 m
[#] VoliageType «—value type | double 1 W

Manage owned interfaces local to a port using the Interface Editor in Port Interface View.

archModel ==

® |FarchModel » -
@,. archModel

Ed

D Power E’i_ 2"3::

- MllPewerSturce P b : »

E ’"wr"mrreb—{} PmrSmIl::u) e BT gy e —_

o &

port

=

= =P

= F i

Interfaces @ %
= - S (&R [B] @] |[searc q

Port Int Vi)
[0 e‘rﬁce iew v] @

/ Type Dimensions Units

~ 'O PowerSource

Life 4= owned element double 1 days

3-5

3 System Composer Terminology

3-6

Term Definition Application More Information
interface An interface data dictionary |Local interfaces on a * “Manage Interfaces with
data is a consolidated list of all |System Composer model Data Dictionaries”
dictionary |the interfaces and value can be saved in an interface |, «“Reference Data
types in an architecture and |data dictionary using the Dy
where they are used. Interface Editor. You can
reuse interface dictionaries
between models that need
to use a given set of
interfaces, elements, and
value types. Linked data
dictionaries are stored in
separate SLDD files.
data A data interface defines the |Data interfaces represent * “Create Architecture
interface kind of information that the information that is Model with Interfaces

flows through a port. The
same interface can be
assigned to multiple ports.
A data interface can be
composite, meaning that it
can include data elements
that describe the properties
of an interface signal.

shared through a connector
and enters or exits a
component through a port.
Use the Interface Editor to
create and manage data
interfaces and data
elements and store them in
an interface data dictionary
for reuse between models.

and Requirement Links”
on page 2-5

“Define Port Interfaces
Between Components”

data element

A data element describes a
portion of an interface, such
as a communication
message, a calculated or
measured parameter, or
other decomposition of that
interface.

Data interfaces are
decomposed into data
elements:

¢ Pins or wires in a
connector or harness.

* Messages transmitted
across a bus.

¢ Data structures shared
between components.

e “Create Interfaces”

* “Assign Interfaces to
Ports”

value type |A value type can be used as |You can also assign the type |“Create Value Types as

a port interface to define of data elements in data Interfaces”

the atomic piece of data interfaces to value types.

that flows through that port |Add value types to data

and has a top-level type, dictionaries using the

dimension, unit, complexity, |Interface Editor so that

minimum, maximum, and you can reuse the value

description. types as interfaces or data

elements.

owned An owned interface is an Create an owned interface |“Define Owned Interfaces
interface interface that is local toa |to represent a value type or |Local to Ports”

specific port and not shared
in a data dictionary or the
model dictionary.

data interface that is local
to a port.

System Composer Concepts

Term

Definition

Application

More Information

adapter

An adapter helps connect
two components with
incompatible port interfaces
by mapping between the
two interfaces. An adapter
can act as a unit delay or
rate transition. You can also
use an adapter for bus
creation. Use the Adapter
block to implement an
adapter.

With an adapter, you can
perform functions on the
“Interface Adapter” dialog
box:

* Create and edit
mappings between input
and output interfaces.

Apply an interface
conversion UnitDelay
to break an algebraic
loop.

* Apply an interface
conversion
RateTransition to
reconcile different
sample time rates for
reference models.

* Apply an interface
conversion Merge to
merges two or more
message or signal lines.

* When output interfaces
are undefined, you can
use input interfaces in
bus creation mode to
author owned output
interfaces.

* “Interface Adapter”
* Adapter

Author Physical Models

Author physical models in System Composer using subsystem components. A subsystem component is
a Simulink subsystem that is part of the parent System Composer architecture model. You can add
Simscape behavior to a subsystem component using physical ports, connectors, and interfaces. For
more information, see “Author Model Behavior” on page 3-20.

3 System Composer Terminology

archMaodel iz}
® |archModel » subsystem component v
LY
el N
B physical port {E%
Power
B
. . -
() WireléssSignal _
- I - Wire
I 1 1
A PowerSource — > PowerSource
L physical subsystem
O | & v
LS >
Interfaces ® X
(815 5] (& @[] (@] 8] [seaen QDetonary view -}
Type ‘
~ [# archDictionary.sldd _ physical domain
~ {0 WirelessPower +——— physical interface
ElectricalConn +———— physical element Connection: Toundation.electrical. electrical -

Term

Definition

Application

More Information

physical
subsystem

A physical subsystem is a
Simulink subsystem with
Simscape connections.

A physical subsystem with
Simscape connections uses
a physical network
approach suited for
simulating systems with real
physical components and
represents a mathematical
model.

“Implement Component
Behavior Using Simscape”

physical port

A physical port represents a
Simscape physical modeling
connector port called a
Connection Port.

Use physical ports to
connect components in an
architecture model or to
enable physical systems in a
Simulink subsystem.

“Define Physical Ports on
Component”

physical
connector

A physical connector can
represent a nondirectional
conserving connection of a
specific physical domain.
Connectors can also
represent physical signals.

Use physical connectors to
connect physical
components that represent
features of a system to
simulate mathematically.

“Architecture Model with
Simscape Behavior for a DC
Motor”

3-8

System Composer Concepts

of a physical interface. A
physical element is
equivalent to a
Simulink.ConnectionEl
ement object.

physical domain to enable
use of that domain in a
physical model.

Term Definition Application More Information
physical A physical interface defines |Use a physical interface to |“Specify Physical Interfaces
interface the kind of information that |bundle physical elements to [on Ports”

flows through a physical describe a physical model

port. The same interface using at least one physical

can be assigned to multiple |domain.

ports. A physical interface is

a composite interface

equivalent to a

Simulink.ConnectionBu

s object that specifies any

number of

Simulink.ConnectionEl

ement objects.
physical A physical element Define the Type of a “Describe Component
element describes the decomposition |physical element as a Behavior Using Simscape”

Extend Architectural Elements

Create a profile in the Profile Editor and add stereotypes to it with properties. Apply the stereotype
to a component, and set the property value in the Property Inspector.

3-9

3 System Composer Terminology

Profile Browser Sterectype Properties
Filter profiles: | <all> *| Mame: [ElectricalComponent _
' profile ' rovies to: [Companent = =] 5
v &3 h&bothuﬁh"f " 0 —I
[erecricaComparint Base sterectype: | <nothing =
[Abstract sterectype
stereotype .
b Defsult Stereotypes for Composition
o
. Property namse Type Mame Unit Default
1 Powwer double AT W [}
= archModel E= | Property Inspector =
® archMcdeI 3 - Component
e A || Architecture Info
O
Bl v Main
. Mame Power
E:
"""" : Stereotype Add. -
_ ~ ElectricalComponent Select -
™ | ()WireléssSignal e S~
' Wire > | :
[L ; [} » Paramete
= — > PowerSource
| property
o property value
e .

3-10

System Composer Concepts

Term Definition Application More Information
stereotype |A stereotype is a custom Apply stereotypes to model |“Extend Architectural
extension of the modeling |elements such as root-level |Design Using Stereotypes”
language. Stereotypes architecture, component on page 2-19
provide a mechanism to architecture, connectors,
extend the architecture ports, data interfaces, value
language elements by types, functions,
adding domain-specific requirements, and links.
metadata. Functions only apply to
software architectures. You
must have a Requirements
Toolbox license to apply
stereotypes to requirements
and links. A model element
can have multiple
stereotypes. Stereotypes
provide model elements
with a common set of
property fields, such as
mass, cost, and power.
property A property is a field in a Use properties to store * “Set Properties” on page
stereotype. You can specify |quantitative characteristics, 2-23
property values for each such as weight or speed, « “Add Properties with
element to which the that are associated with a Stereotypes”
stereotype is applied. model element. Properties . .
can also be descriptive or |* " Set Properties for
represent a status. You can Analysis
view and edit the properties
of each element in the
architecture model using
the Property Inspector.
profile A profile is a package of Author profiles and apply * “Define Profiles and

stereotypes that you can use
to create a self-consistent
domain of element types.

profiles to a model using the
Profile Editor. You can
store stereotypes for a
project in one or several
profiles. When you save
profiles, they are stored in
XML files.

Stereotypes”

* “Use Stereotypes and
Profiles”

Manage and Verify Requirements

In the Requirements Perspective, you can create, manage, and allocate requirements. View the
requirements on the architecture model. This functionality requires a Requirements Toolbox license.

3-11

3 System Composer Terminology

requirement

|#‘I: Transport Load '\

link /P IMPLEMENTS

Robot
Choice

= Wire
(e

Use Simulink Test to create a test harness for a System Composer component to validate simulation
results and verify design in the Test Manager. This functionality requires a Simulink Test license.

scExamplesmallUAVModel_Hamess1 HEEH
® |[*a]scExampleSmalluAvModel_Harness1 # hd
= | D >
L ciiSricDaflection
I:' (2 :\ i lightCmds
[
i
Signal spec. Airfrarme
and routing
» ||H&
[[[|

3-12

System Composer Concepts

Term Definition Application More Information
requirement |Requirements are a To enhance traceability of |+ “Link and Trace
S collection of statements requirements, link system, Requirements”
describing the desired functional, customer, . “Establish Traceability
behavior and characteristics |performance, or design o
of a system. Requirements |requirements to and Requirements”
ensure system design components and ports. Link
integrity and are requirements to each other
achievable, verifiable, to represent derived or
unambiguous, and allocated requirements.
consistent with each other. |Manage requirements from
Each level of design should |the Requirements
have appropriate Perspective on an
requirements. architecture model or
through custom views.
Assign test cases to
requirements using the Test
Manager for verification
and validation.
requirement |A requirement set is a Use the Requirements * “Allocate and Trace
set collection of requirements. |Editor to edit and refine Requirements from
You can structure the requirements in a Design to Verification”
requirements hierarchically |requirement set. « “Manage Requirements”
and link them to Requirement sets are stored
components or ports. in SLREQX files. You can
create a new requirement
set and author requirements
using Requirements
Toolbox, or import
requirements from
supported third-party tools.
requirement |A link is an object that View links using the * “Create Architecture
link relates two model-based Requirements Perspective Model with Interfaces

design elements. A
requirement link is a link
where the destination is a
requirement. You can link
requirements to
components or ports.

in System Composer. Select
a requirement in the
Requirements Browser to
highlight the component or
the port to which the
requirement is assigned.
Links are stored externally
as SLMX files.

and Requirement Links”
on page 2-5

* “Update Reference
Requirement Links from
Imported File”

3-13

3 System Composer Terminology

3-14

Term

Definition

Application

More Information

test harness

A test harness is a model

that isolates the component
under test with inputs,
outputs, and verification
blocks configured for
testing scenarios. You can
create a test harness for a
model component or for a
full model. A test harness
gives you a separate testing
environment for a model or
a model component.

Create a test harness for a
System Composer
component to validate
simulation results and verify
design. To edit the
interfaces while you are
testing the behavior of a
component in a test
harness, use the Interface
Editor.

* “Verify and Validate
Requirements”

¢ “Create a Test Harness’
(Simulink Test)

1y

Allocate Architecture Models

In the Allocation Editor, allocate components between two architecture models, based on a
dependency or a directed relationship.

Allocation Set Browser

& Scena

/

4 57 AllocationRobotDesign

allocation scenario

Scemario 1

/!

rio 1

e

/|

™ Frame

allocation

AN

™ RobotDesign

™ Computer

[~ Battery

- E archModel

N

v [Power

directed relationship from
architectural elements —
components, ports, and

another model.

connectors — in one model
to architectural elements in

allows you to allocate
functional architectural
elements to logical
architectural elements and
logical architectural
elements to physical
architectural elements.

allocation set v [™] Robot 4
v 7] Adapter 4
Term Definition Application More Information
allocation An allocation establishes a |Resource-based allocation |¢ “Create and Manage

Allocations Interactively”

* “Create and Manage
Allocations
Programmatically”

System Composer Concepts

Term Definition Application More Information
allocation An allocation scenario Allocate between model “Systems Engineering
scenario contains a set of allocations |elements in an allocation Approach for SoC
between a source and a scenario. The default Applications”
target model. allocation scenario is called
Scenario 1.
allocation An allocation set consists of |Create an allocation set * “Establish Traceability
set one or more allocation with allocation scenarios in Between Architectures
scenarios that describe the Allocation Editor. and Requirements”
various allocations between |Allocation sets are saved as |, Wl At
a source and a target model. | MLDATX files. i, e Do
Monitoring System”

Create Custom Views

Apply a view filter to generate an element group of components for the view in the Architecture

Views Gallery.

[]Electrical Elements
view
‘ Power {F

A PowerSource L

> Wire :,

\{_I)WireleSSSignal [

element group
View Configurations Requirement Links
FILTER GROUPING
[T, Ada Component Filter |~ | [Add Port Filter || v Auto Apply| /ﬁlter
5 COMPONENT FILTER /
Select | Components ~ | Where |Stereotype | ~ | |isa - | |RobotF’roﬂIe.EIectricaIComp... | - |

B

3-15

3 System Composer Terminology

3-16

Term Definition Application More Information
view A view shows a You can use different types |“Modeling System
customizable subset of of views to represent the Architecture of Keyless
elements in a model. Views |system. Switch betweena |Entry System”
can be filtered based on component diagram,
stereotypes or names of component hierarchy, or
components, ports, and architecture hierarchy. For
interfaces, along with the |software architectures, you
name, type, or units of an |can switch to a class
interface element. Create |diagram view.
views by adding elements
manually. Views create a |A viewpoint represents a
simplified way to work with |stakeholder perspective that
complex architectures by specifies the contents of the
focusing on certain parts of |ViEW.
the architectural design.
element An element group is a Use element groups to * “Create Architecture
group grouping of components in a|programmatically populate Views Interactively”
s al e « “Create Architectural
Views Programmatically”
query A query is a specification Use queries to search “Find Elements in Model
that describes certain elements with constraint Using Queries”
constraints or criteria to be |criteria and to filter views.
satisfied by model elements.
component |A component diagram Component diagrams allow |“Inspect Components in
diagram represents a view with you to programmatically or |Custom Architecture Views”

components, ports, and
connectors based on how
the model is structured.

manually add and remove
components from the view.

on page 2-30

System Composer Concepts

with components, ports,
reference types, component
stereotypes, and stereotype
properties.

* Component hierarchy
diagrams display
components in tree form
with parents above
children. In a component
hierarchy view, each
referenced model is
represented as many
times as it is used.

* Architecture hierarchy
diagrams display unique
component architecture
types and their
relationships using
composition connections.
In an architecture
hierarchy view, each
referenced model is
represented only once.

Term Definition Application More Information
hierarchy You can visualize a There are two types of “Display Component
diagram hierarchy diagram as a view | hierarchy diagrams: Hierarchy and Architecture

Hierarchy Using Views”

Analyze Architecture Models

Create an analysis function to analyze power consumption in the RobotDesign architecture model.

function RobotDesign_1l(instance,varargin)

if instance.isComponent() && ~isempty(instance.Components)...
&& instance.hasValue('RobotProfile.ElectricalComponent.Power")
sysComponent_power = 0;
for child = instance.Components
if child.hasValue('RobotProfile.ElectricalComponent.Power")
comp_power = child.getValue('RobotProfile.ElectricalComponent.Power");
sysComponent_power = sysComponent_power + comp_power;

end
end

instance.setValue('RobotProfile.ElectricalComponent.Power',sysComponent_power);

end

Analyze the robot design using the analysis function to determine total power usage.

instance model

=57 Instances Power

4 B RobotDesign 380
o Battery 130
o Computer, 200 Property
O Frame

50 4 5 RobotProfile Electrical Component

instance

HH Power

analysis

Value

,...-"""'-" 380 W

INSTANCE PROPERTIES

Componentinstance: RobotDesign

Units

3-17

3 System Composer Terminology

3-18

Term Definition Application More Information
analysis Analysis is a method for Use analyses to calculate * “Analyze Architecture
quantitatively evaluating an |overall reliability, mass roll- Model with Analysis
architecture for certain up, performance, or thermal Function” on page 2-25
charagteristics. Static characteristics of a system, |, “Analyze Architecture”
analysis analyzes the or to perform a SWaP e .
structure of the system. analysis. * “Simple Roll-Up Analysis
Static analysis uses an Using Robgt System with
analysis function and Properties
parametric values of
properties captured in the
system model.
analysis An analysis function is a Use an analysis function to |¢ “Analysis Function
function MATLAB function that calculate the result of an Constructs”
computes values necessary |analysis. « “Write Analysis
to evaluate the architecture ErmE e
using the properties of each
element in the model
instance.
instance An instance model is a You can update an instance |“Run Analysis Function”
model collection of instances. model with changes to a
model, but the instance
model will not update with
changes in active variants
or model references. You
can use an instance model,
saved in a MAT file, of a
System Composer
architecture model for
analysis.
instance An instance is an An instance freezes the “Create a Model Instance

occurrence of an
architecture model element
at a given point in time.

active variant or model
reference of the component
in the instance model.

for Analysis”

Author Sequence Diagrams

Create a sequence diagram in the Architecture Views Gallery to describe system interactions.

System Composer Concepts

sequence diagram

‘ Baftery ‘ Computer ‘ Frame
I - 1 ! | \
I | [|
| 1 |
| 1 1 . .
rising(Power. RobotVoltage -100) X lifeline
Power : \ " : Power :
: message : :
Opt¥ : fragment :
i | i
| ' |
! falling(Electric.\Violtage - 20) !
Electric i i Electric
| 1 |
annotation I 1 I
I EV = 20 triggers message from Battery to Frame IH"‘NIQPE rand
Term Definition Application More Information
sequence A sequence diagram Use sequence diagrams to |* “Describe System
diagram represents the expected describe how the parts of a Behavior Using
interaction between system interact. Sequence Diagrams”
strugtural elements of an . “Use Sequence
architecture as a sequence Diagrams with
of message exchanges. Architecture Models”
lifeline A lifeline is represented by a|The head of a lifeline “Add Lifelines and
head and a timeline that represents a component in |Messages”
proceeds down a vertical an architecture model.
dotted line.
message A message sends A message label has a “Create Messages in
information from one trigger and a constraint. A |Sequence Diagram”
lifeline to another. Messages |trigger determines whether
are specified with a the message occurs. A
message label. constraint determines
whether the message is
valid.
annotation |An annotation describes the |Use annotations to provide |“Use Annotations to
elements of a sequence detailed explanations of Describe Elements of
diagram. elements or workflows Sequence Diagram”
captured by sequence
diagrams.
fragment A fragment indicates how a |A fragment is used to model | “Author Sequence Diagram

group of messages within it
execute or interact.

complex sequences, such as
alternatives, in a sequence
diagram.

Fragments”

3-19

3 System Composer Terminology

Term

Definition

Application

More Information

operand

An operand is a region in a
fragment. Fragments have
one or more operands
depending on the kind of
fragment. Operands can
contain messages and
additional fragments.

Each operand can include a
constraint to specify
whether the messages
inside the operand execute.
You can express the
precondition of an operand
as a MATLAB Boolean
expression using the input
signal of any lifeline.

“Add Fragments and
Operands”

Author Model Behavior

Use a reference component to decompose and reuse architectural components and Simulink model
behaviors. Use a subsystem component or state chart to implement Simulink and Stateflow behaviors.

RobotDesign

reference architecture

b i Wire

:j‘_:_i

3-20

Wire '

subsystem reference

Battery U
< Battery = Frame
[< Frame >
Electric b= b= Electric
b= Wire]
Signal < < Signal
v Fa
b= c
i :
=5y =
Computer 1S
[~ Power Maotion =

1

state chart behavior

System Composer Concepts

Term Definition Application More Information
reference A reference component is a |You can reuse compositions |[¢ “Implement Component
component |component whose definition |in the model using Behavior Using
is a separate architecture |reference components. Simulink”
model, Simglinl; behavior |There are three types of 0 UCveEnE And e
model, or Simulink reference components: B —
subsystem behavior. A
reference component * Model references are
represents a logical Simulink models.
hierarchy of other * Subsystem references
compositions. are Simulink
subsystems.
* Architecture references
are System Composer
architecture models or
subsystems.
parameter |A parameter is an instance- |Parameters are available for |* “Author Parameters in
specific value of a value inlined architectures and System Composer Using
type. components. Parameters are Parameter Editor”
also available_ for e “Access Model
components hnked to model Arguments as
references or arch1t§cture Parameters on Reference
references that specify Com ts”
ponents
model arguments. You can
specify independent values |* “Use Parameters to
for a parameter on each Store Instance Values
component. with Components"
subsystem |A subsystem component is a [Add Simulink subsystem * “Create Simulink
component |Simulink subsystem that is |behavior to a component to Subsystem Behavior

part of the parent System
Composer architecture
model.

author a subsystem
component in System
Composer. You cannot
synchronize and reuse
subsystem components as
Reference Component
blocks because the
component is part of the
parent model.

Using Subsystem
Component”

“Create Simulink
Subsystem Component”

state chart

A state chart diagram
demonstrates the state-
dependent behavior of a
component throughout its
state lifecycle and the
events that can trigger a
transition between states.

Add Stateflow chart
behavior to describe a
component using state
machines. You cannot
synchronize and reuse
Stateflow chart behaviors as
Reference Component
blocks because the
component is part of the
parent model.

“Implement Behaviors
for Architecture Model
Simulation” on page 2-37

“Implement Component
Behavior Using
Stateflow Charts”

3-21

3 System Composer Terminology

Design Software Architectures

Design a software architecture model, define the execution order of the functions from the
components, simulate the design in the architecture level, and generate code.

mySoftwareArchitectureDesign <« software architecture

software component
~ Component iIC

output_100ms
< export_model_software_architecture > Hed s>

b H@input_10ms ’ output_100ms > —4foutput_100ms
input_10msi— b input 10ms| | — " L

ottput”10ms [—4foutput_10ms
output_10msi B

View the software architecture diagram in a class diagram in the Architecture Views Gallery.

.View1 class diagram
#
scClassDiagram [mBotPeriodicExpFcns2_classDiagram
«Hardware» mBotPeriodicDemo_classDiagram l Methods

Mass: double (kg) =5 e — Function4
Version: string = "1.0" Mass: double (kg) = 5 Function5
isNew: boolean = false Version: string = "1.0"

«Software»

isNew: boolean = false

Latency: int16 (cm) = 10 ®———~Software» L .
Methods Latency: int16 (cm) = 10 [mBotPeriodicExpFcns1_classDiagram

C1_C_1_Function1 Methods «Hardware»

C1_C_1_Funcftion2 C 1 Function? — . Mass: double (kg)=5

C1_C_1_Function3 C 1 Function? Version: string = "1.0"

C1_C_2 Function1 C 1 Function3 isNew: boolean = false

C1_C_2_Function2 C727Fum:1\ on1 «Software»

C1_C_2_Function3 C_Z_Funt:lwon2 Latency: int16 (cm) = 10

C1_C_3 Function4 C 2 Function3 Methods

C1_C_3_Function5 C 3 Functiond Function1

C2_C_1_Function1 ¢ 3 Functions Function2

C2_C_1_Function2 - Function3:

C2_C_1_Function3

C2_C_2 Function1
C2_C_2 Function2
C2_C_2_Function3

C2_C_3 Function4 software function
C2_C_3 Function5

C3_Function1

C3_Function2

C3_Function3

3-22

System Composer Concepts

Term Definition Application More Information
software A software architecture is a |Use software architectures |¢ “Author Software
architecture |specialization of an in System Composer to Architectures”
architecture for.softwgre— authpr software « “Simulate and Deploy
based systems, including architecture models S Ardnieemes”
the description of software |composed of software
compositions, component components, ports, and
functions, and their interfaces. Design your
scheduling. software architecture
model, define the execution
order of your component
functions, simulate your
design in the architecture
level, and generate code.
software A software component isa |Implement a Simulink * “Implement Behaviors
component |specialization of a export-function, rate-based, for Architecture Model
component for software or JMAAB model as a Simulation” on page 2-37
entities, including its software component, o CeslE Sl
functions (entry points) and |simulate the software T
interfaces. architecture model, and Component”
generate code.
software A software composition is a |Encapsulate functionality by | “Modeling Software
composition |diagram of software aggregating or nesting Architecture of Throttle
components and connectors |multiple software Position Control System”
that represents a composite |components or
software entity, such as a compositions.
module or application.
function A function is an entry point |You can apply stereotypes to | “Author and Extend
that can be defined in a functions in software Functions for Software
software component. architectures, edit sample |Architectures”
times, and specify the
function period using the
Functions Editor.
service A service interface defines |Once you have defined a * “Author Service
interface the functional interface service interface in the Interfaces for Client-

between client and server
components. Each service
interface consists of one or
more function elements.

Interface Editor, you can
assign it to client and server
ports using the Property
Inspector. You can also use
the Property Inspector to
assign stereotypes to
service interfaces.

Server Communication”

* systemcomposer.inte
rface.Servicelnterf
ace

3-23

3 System Composer Terminology

3-24

Term

Definition

Application

More Information

function
element

A function element
describes the attributes of a
function in a client-server
interface.

Edit the function prototype
on a function element to
change the number and
names of inputs and outputs
of the function. Edit
function element properties
as you would edit other
interface element
properties. Function
argument types can include
built-in types as well as bus
objects. You can specify
function elements to
support:

* Synchronous execution
— When the client calls
the server, the function
runs immediately and
returns the output
arguments to the client.

* Asynchronous execution
— When the client makes
a request to call the
server, the function is
executed asynchronously
based on the priority
order defined in the
Functions Editor and
Schedule Editor and
returns the output
arguments to the client.

systemcomposer.interf
ace.FunctionElement

function
argument

A function argument
describes the attributes of
an input or output argument
in a function element.

You can set the properties of
a function argument in the
Interface Editor just as
you would any value type:
Type, Dimensions, Units,
Complexity, Minimum,
Maximum, and
Description.

systemcomposer.interf
ace.FunctionArgument

class
diagram

A class diagram is a
graphical representation of
a static structural model
that displays unique
architecture types of the
software components
optionally with software
methods and properties.

Class diagrams capture one
instance of each referenced
model and show
relationships between them.
Any component diagram
view can be optionally
represented as a class
diagram for a software
architecture model.

“Class Diagram View of
Software Architectures”

System Composer Concepts

See Also

More About

. “Compose and Analyze Systems Using Architecture Models” on page 2-2
. “Organize System Composer Files in Projects”

. “Simulate Mobile Robot with System Composer Workflow”

. “Modeling System Architecture of Small UAV”

External Websites

. Systems Engineering: Managing System Complexity

3-25

https://www.mathworks.com/videos/series/systems-engineering.html

	Product Overview
	System Composer Product Description

	Compose an Architecture Model
	Compose and Analyze Systems Using Architecture Models
	Create Architecture Model with Interfaces and Requirement Links
	Visually Represent System
	Edit Data Interfaces
	Decompose Components
	Robot Arm Architecture Model
	Manage Requirement Links

	Extend Architectural Design Using Stereotypes
	Mobile Robot Architecture Model
	Load Architecture Model Profile
	Apply Stereotypes to Model Elements
	Set Properties

	Analyze Architecture Model with Analysis Function
	Mobile Robot Architecture Model with Properties
	Perform Analysis

	Inspect Components in Custom Architecture Views
	Mobile Robot Architecture Model with Properties
	Create Spotlight Views from Components
	Create Filtered Architecture View

	Implement Behaviors for Architecture Model Simulation
	Robot Arm Architecture Model
	Reference Simulink Behavior Model in Component
	Add Stateflow Chart Behavior to Component
	Design Software Architecture in Component
	Represent System Interaction Using Sequence Diagrams

	System Composer Terminology
	System Composer Concepts
	Author Architecture Models
	Manage Variants
	Manage Interfaces
	Author Physical Models
	Extend Architectural Elements
	Manage and Verify Requirements
	Allocate Architecture Models
	Create Custom Views
	Analyze Architecture Models
	Author Sequence Diagrams
	Author Model Behavior
	Design Software Architectures

